

بسم الله الرحمن الرحيم

Fundamentals of Data Networks

Chapter 1: Introduction

Textbook : Data Communications and Networking, 5th Behrouz A. Forouzan.

Faculty of Engineering
Electrical Engineering Department

Chapter 1: Introduction

1.1 Data Communications

1.2 Networks

1.3 The Internet

1.4 Protocols and Standards

Introduction

- Data communications and networking
 - Change the way we do business and the way we live
 - Business decisions have to be made more quickly
 - Decision depends on immediate access to accurate information
 - Business today rely on computer networks and internetworks
 - Before get hooked up, we need to know:
 - How networks operate
 - What types of technologies are available
 - Which design best fills which set of needs

Introduction

- Development of the PC changes a lot in business, industry, science and education.
- Similar revolution is occurring in data communication and networking
 - Technologies advances are making it possible for communications links to carry more and faster signals
 - Services are evolving to allow the use of this expanded capacity
 - For example telephone services extended to have:
 - Conference calling
 - Call waiting
 - Voice mail
 - Caller ID

1.1 Data Communications

Communication:

- Means **sharing information**
 - Local (face to face) or remote (over distance)
- Telecommunication
 - Telephone, telegraph and television
 - Means communication at a distance
 - Tele is Greek for far

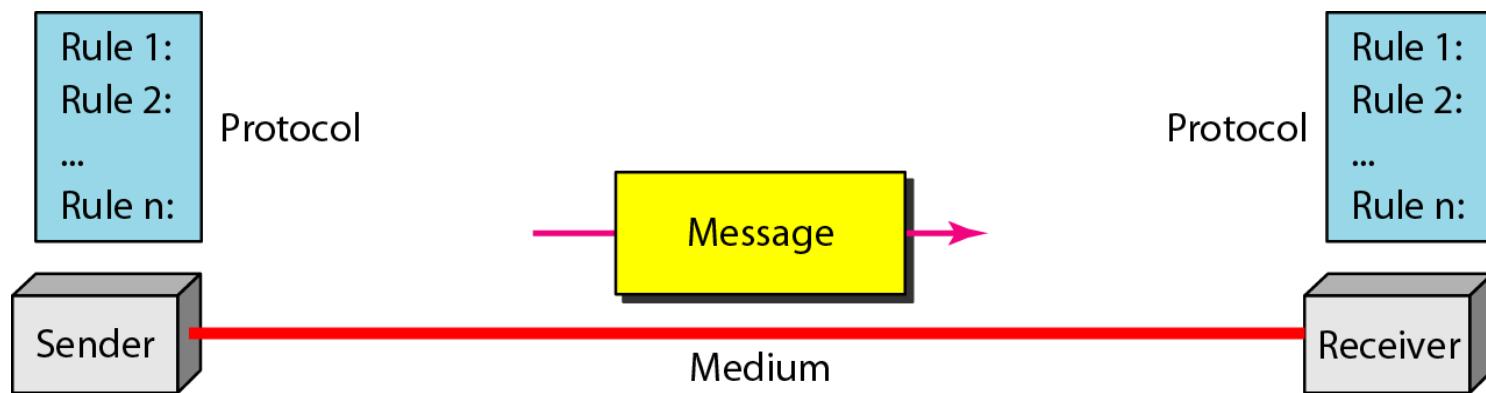
Data Communications

Data:

- Refers to **information**
 - Presented in any form
 - Agreed upon by the parties (creating & using)

Data communication : is the exchange of data between two devices via some form of transmission medium (wire cable).

Data Communications

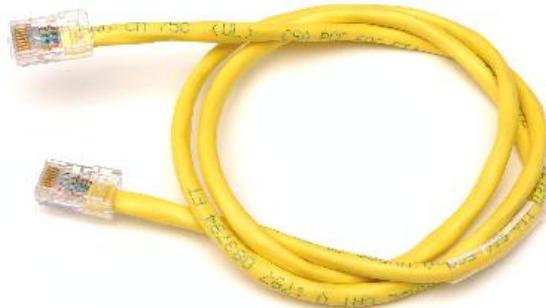

- **Communication system** made up of a combination of **hardware** and **software**
- Effectiveness of data communication system depends on:
 1. **Delivery** : The system must deliver data to correct destination. Data received by the indented user only
 2. **Accuracy**: The system must deliver data accurately (no change).
 - Data changed & uncorrected is unusable

Data Communications

3. **Timeliness**: The system must deliver data in timely manner
 - Data arrived late are useless
 - In the same order (video and audio) & without delay (Real time transmission)
4. **Jitter**: Variation in the packet arrival time (uneven quality in the video is the result)

Components

- A data communication system is made up of **five** components

Components

1. **Message:** the information (data) to be communicated
 - Consist of text, numbers, pictures, audio, or video
2. **Sender:** the device that sends the data message
 - Computer, workstation, telephone handset, video camera, ...
3. **Receiver:** the device that receives the message
 - Computer, workstation, telephone handset, television,
....

Components

4. **Medium:** The physical path by which a message travels from sender to receiver
 - twisted pair, coaxial cable, fiber-optic, radio waves

Components

5. **Protocol**: a set of rules that govern data communications
 - An agreement between the communicating devices
 - Devices may be connected but not communicating (no protocol)
 - Arabic speaker with Japanese speaker

Data Representation

Text

Numbers

Images

Audio

Video

Data Representation

- **Text:**
 - Sequence of bits (0s or 1s)
 - Different sets of patterns to represent text symbols (each set is called: *code*)
 - ASCII: 7 bits (128 symbols)
 - common coding system today is: **Unicode**
 - Unicode uses: **32 bits** to represent a symbol or character in any language (4,294,967,296)

```
10101010 10101010 10101010 10101010 10101010 10101010 10101010
```

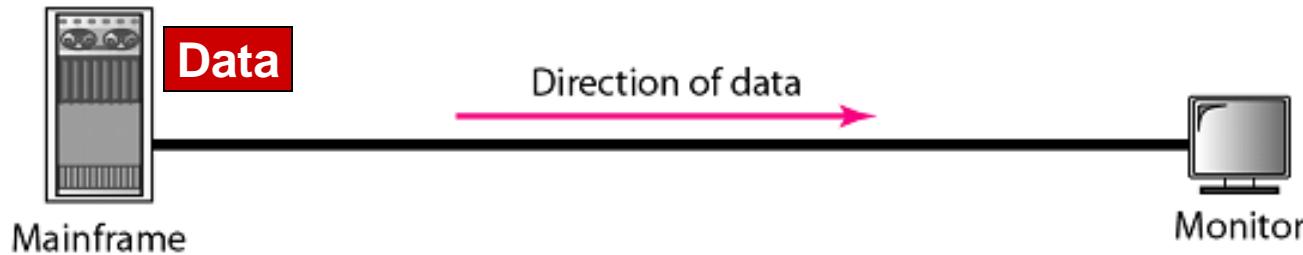
Data Representation

- Numbers:
 - Represented by bit patterns
 - The number is directly converted to a **binary** number

Data Representation

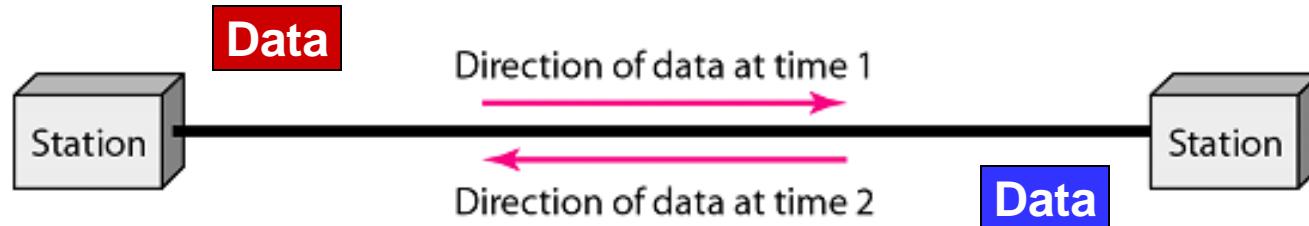
- **Images:**
 - Represented by bit patterns
 - A matrix of **pixels**
 - Resolution: size of the pixels
 - High resolution: more memory is needed
 - Each pixel is assigned a bit pattern
 - 1-bit pattern (black and white dots image)
 - 2-bit pattern (4 levels of gray)
 - **RGB** (color images)

Data Representation

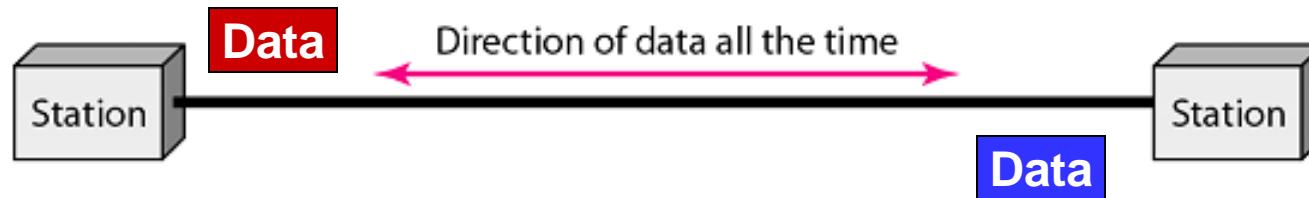

- **Audio:**
 - Continuous not discrete
 - Change to digital signal
- **Video:**
 - Recording or broadcasting of a picture or movie
 - Change to digital signal

Data Flow

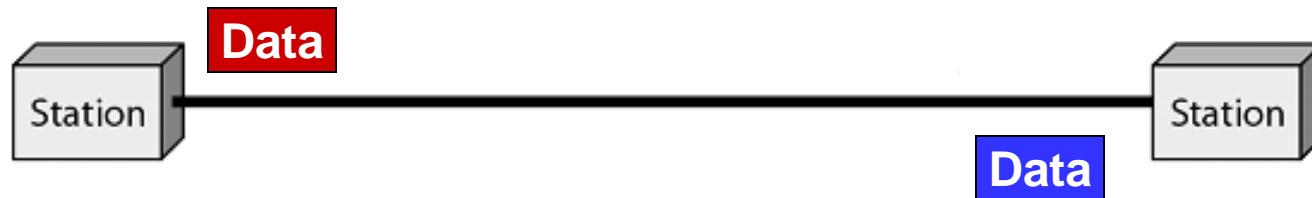
- Communication between two devices can be:
 - Simplex
 - Half-Duplex
 - Full-Duplex


Data Flow

- **Simplex** (one way street)
 - The communication is unidirectional
 - Only one device on a link can transmit; the other can only receive
 - Use the entire capacity of the channel to send data
 - Example: Keyboards, Monitors


Data Flow

- **Half-Duplex** (one-lane with two-directional traffic)
 - Each station can both transmit and receive, but not at the same time
 - When one device is sending, the other can only receive, and vice versa
 - The entire capacity of a channel is taken over by the transmitting device
 - Example: Walkie-talkies


Data Flow

- **Full-Duplex (Duplex)** (two-way street)
 - Both stations can transmit and receive at same time
 - Signals going in either direction sharing the capacity of the link
 - Sharing can occur in two ways:
 - Link has two physically separate transmission paths
 - One for sending and the other for receiving
 - The capacity of the channel is divided between signals travelling in both directions
 - Example: Telephone network

Exercise

- What mode of data flow the following exhibits shows?

- Answer: Full-Duplex

Networks

- **Network** : A set of devices (**nodes**) connected by communication links
 - Node** : computer, printer, ...
 - **Distributed Processing** :
 - Most networks used it
 - Task is divided among **multiple computers** instead of one single large computer

Networks

● Network Criteria

- Network must meet a certain number of criteria
- The most important of the network criterions are:
 - Performance
 - Reliability
 - Security

Networks

- ## Performance

- **Transit time**: A mount of time required for a message to travel from one device to another
- **Response time**: Elapsed time between an inquiry and a response

Networks

- **Performance**
 - Performance depends on :
 - 1- **Number of users**: large number slow response time.
 - 2- **Type of transmission medium**: fiber-optic cabling faster than others cables.
 - 3- **Capabilities of the connected hardware**: affect both the speed and capacity of transmission.
 - 4- **Efficiency of the software**: process data at the sender and receiver and intermediate affects network performance.

Networks

- Performance
 - Performance is evaluated by two contradictory networking metrics:
 - **Throughput (high)**: a measure of how fast we can actually send data through a network
 - **Delay (low)**

Networks

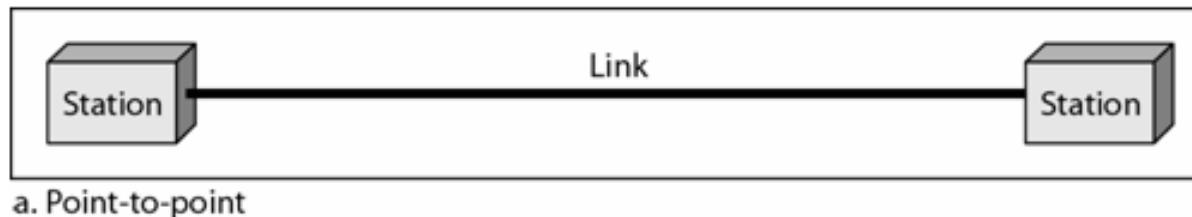
- Reliability
 - Reliability is measured by:
 1. Frequency of failure
 2. Recovery time of a network after a failure
 3. Network's robustness in a catastrophe: protect by good back up network system

Networks

- **Security**
 - Protecting data from unauthorized access
 - Protecting data from damage and development
 - Implementing policies and procedures for recovery from breaches and data losses (Recovery plan)

Networks

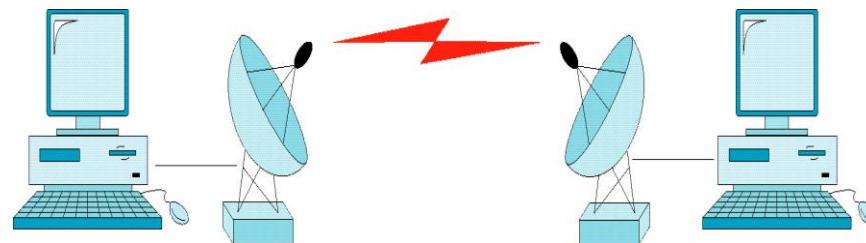
- Physical Structures:


- Type of connection

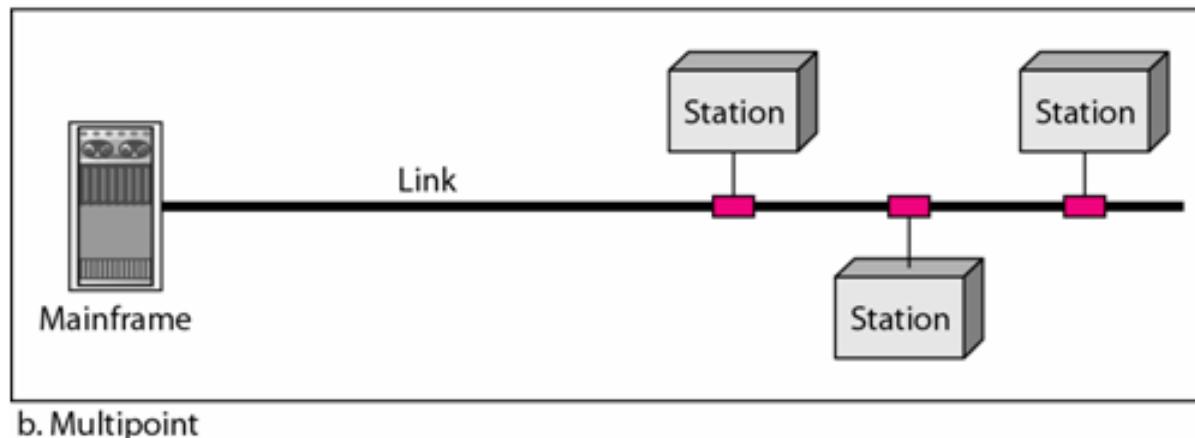
- Network**: Two or more devices connected through links
 - Link**: Communication pathway that transfers data from one device to another
 - Two devices must be connected in some way to the same link at the same time. Two possible types:
 - Point-to-Point
 - Multipoint

Networks

- Point-to-Point


- Dedicated link between two devices
- Entire capacity of the link is reserved for transmission between those two devices
- Use an actual length of wire or cable

Networks


- Point-to-Point

- Other options, such as microwave or satellite is possible
- Example: Television remote control

Networks

- Multipoint (multidrop)
 - More than two devices share a single link
 - Capacity is shared
 - Channel is shared either spatially or temporally
 - Spatially shared: if devices use link at same time
 - Timeshare: if users must take turns

